Leetcode - 105. Construct Binary Tree from Preorder and Inorder Traversal
Coding Test

Leetcode - 105. Construct Binary Tree from Preorder and Inorder Traversal

일시불

문제

Loading...
Level up your coding skills and quickly land a job. This is the best place to expand your knowledge and get prepared for your next interview.

풀이

처음에 제출한 코드는 TLE가 나왔다. 한 iteration에서 루트를 찾을 때 O(N), 각 inorder와 preorder 리스트를 좌/우로 만들 때 2*O(N)이 걸린다.  전체 Time complexity는 O(N)이다. 최적화를 통해 통과되기는 했지만, 좋은 방법은 아니다.

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        def build_subtree(pre_list, in_list):
            if not pre_list:
                return None

            root_val = pre_list[0]
            root_index = in_list.index(root_val)

            left_in_list = in_list[:root_index]
            right_in_list = in_list[root_index + 1 :]

            left_pre_list = pre_list[1 : len(left_in_list) + 1]
            right_pre_list = pre_list[len(left_in_list) + 1 :]

            return TreeNode(
                root_val,
                build_subtree(left_pre_list, left_in_list),
                build_subtree(right_pre_list, right_in_list),
            )

        return build_subtree(preorder, inorder)

좀더 최적화된 재귀 풀이는 Solution 탭에 있다.

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:

        def array_to_tree(left, right):
            nonlocal preorder_index
            # if there are no elements to construct the tree
            if left > right: return None

            # select the preorder_index element as the root and increment it
            root_value = preorder[preorder_index]
            root = TreeNode(root_value)


            preorder_index += 1

            # build left and right subtree
            # excluding inorder_index_map[root_value] element because it's the root
            root.left = array_to_tree(left, inorder_index_map[root_value] - 1)
            root.right = array_to_tree(inorder_index_map[root_value] + 1, right)

            return root

        preorder_index = 0

        # build a hashmap to store value -> its index relations
        inorder_index_map = {}
        for index, value in enumerate(inorder):
            inorder_index_map[value] = index

        return array_to_tree(0, len(preorder) - 1)